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Exotic S = 1 spin-liquid state with fermionic excitations on the triangular lattice

Maksym Serbyn, T. Senthil, and Patrick A. Lee
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Received 22 August 2011; revised manuscript received 3 October 2011; published 3 November 2011)

Motivated by recent experiments on the material Ba3NiSb2O9, we consider a spin-one quantum antiferromagnet
on a triangular lattice with the Heisenberg bilinear and biquadratic exchange interactions and a single-ion
anisotropy. Using a fermionic “triplon” representation for spins, we study the phase diagram within mean-field
theory. In addition to a fully gapped spin-liquid ground state, we find a state where one gapless triplon mode with
a Fermi surface coexists with d + id topological pairing of the other triplons. Despite the existence of a Fermi
surface, this ground state has fully gapped bulk spin excitations. Such a state has linear in-temperature specific
heat and constant in-plane spin susceptibility, with an unusually high Wilson ratio.
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The spin liquid (SL) is a long sought exotic state of matter
proposed by Anderson,1 where long-range magnetic order
is destroyed by quantum fluctuations at zero temperature.
Some materials have been discovered which are promising
candidates for the S = 1/2 SL state.2–6 More recently, possible
SL materials with S = 1 have been discussed. One example is
the insulating spin-1 quantum magnet on a triangular lattice,
NiGa2S4, reported by Nakatsuji et al.7 This material motivated
a number of theoretical papers proposing different microscopic
realizations of S = 1 SL.8–11 Recently high-pressure synthe-
sis of the two-dimensional triangular magnet Ba3NiSb2O9

(Ref. 12) has produced two phases which possibly realize two-
and three-dimensional S = 1 SL.

In particular the 6H-B phase, described as a triangular
lattice of S = 1 Ni2+ ions, shows no magnetic ordering down
to T = 350 mK, well below the Curie-Weiss temperature
scale θCW = −75.5 K. Such behavior, combined with the
frustration of a triangular lattice, suggests the possibility of
the SL phase. The spin susceptibility saturates to a constant at
low temperatures; specific heat is linear in temperature over a
wide range, T = 0.35–7 K, with a high coefficient and Wilson
ratio RW = 5.6. Such observations are highly unusual for a
magnetic insulator and point to a SL with gapless fermionic
excitations. Indeed, to the best of our knowledge, the only other
example where such behavior has been seen is the organic
S = 1/2 SL system.2 Quantum fluctuations are less important
for S = 1, making these data even more striking.

Even within the framework of SL with fermionic excita-
tions, finding a state describing the experiment is a nontrivial
problem. For example, a Fermi surface of neutral spin-carrying
excitations is strongly coupled to a U (1) gauge field,13,14

and the specific heat is expected to behave as T 2/3. On the
other hand, paired SL states in the absence of impurities will
typically have C/T → 0 in the T → 0 limit. In the present
Rapid Communication we propose a candidate SL ground state
with a Fermi surface coexisting with fermion pairing which
gaps out the gauge field. As a result, this state exhibits the
exotic physical properties observed in the experiment. Within
the mean field we find our state to be a ground state of a
simple Hamiltonian. Our goal is not to find a Hamiltonian
which describes the material or to find the ground state of that
Hamiltonian. Rather, we are interested in exploring ground
states which can explain the specific-heat and susceptibility
data and point to further experimental probes of this material.

Our model system consists of quantum S = 1 spins forming
a triangular lattice. For simplicity, we consider only nearest-
neighbor interactions. The general form of the Hamiltonian
can be written as

H =
∑
〈i j〉

[J �Si · �S j + K(�Si · �S j )
2] + D

∑
i

(
Sz

i

)2
, (1)

where we included the Heisenberg exchange interaction with
coupling J > 0 and the biquadratic exchange with coupling
K . In addition, we allow easy-plane or easy-axis type of
anisotropy controlled by the parameter D, but we neglect this
anisotropy in the couplings J and K since it is presumably
small for transition metals. The Hamiltonian (1) has been
considered in the literature in the limits when the anisotropy
is either zero or dominates over other couplings, or there
are longer-range competing exchange couplings. Figure 1
summarizes known results for the ground-state (GS) phase
diagram in a schematic way. There are three different phases
on the line of zero anisotropy D = 0:15–18 In the range
K = −0.4J · · · J , GS is a 120◦ antiferromagnet (AFM). For
larger negative K the system favors collinear ferronematic
(FN) order, i.e., nematic order that does not break the lattice
translational symmetry. In this state the average spin vanishes
〈�S〉 = 0, but full spin rotation symmetry is broken down to
rotations around an axis specified by the director vector d (see
Refs. 16 and 17 and the discussion below). For positive K > J

the ground state is described by aniferronematic (AFN) order.
In this state the director vectors di on three different sublattices
are orthogonal to each other (see Fig. 1), thus breaking the
lattice translation symmetry. In the extreme case of easy-plane
anisotropy (D � J,|K|), the GS is a trivial product of states of
|Sz = 0〉 on all sites, corresponding to the trivial single-site FN
order. For large but negative D, implying extreme easy-axis
anisotropy, only two states with Sz = ±1 on each site survive.
This system can be described by a spin-1/2 XXZ model with all
exchange couplings being antiferromagnetic if 2J > K > 0
or with J z being frustrating and J⊥ ferromagnetic if K < 0.
In both cases there is spin-density-wave ordering of the z

component of the spin in the GS, supplemented by planar
AFN order in the former case and collinear nematic order in
the latter case.19

Physically for Ba3NiSb2O9 we may expect the exchange
coupling J to be the largest with J > |K|,|D|. Both signs of
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FIG. 1. Schematic representation of the ground state in different
limits of the Hamiltonian (1). The white arrows represent average
spin; the arrows with disks indicate the director of the nematic order
parameter. Details are discussed in the text.

D seems plausible. Likewise, it is not known what sign of
the biquadratic exchange K is realized, even though negative
K can be obtained from the large U expansion of a certain
multiorbital Hubbard model or from coupling to phonons.
Therefore, in what follows we study the phase diagram of
Hamiltonian (1) for both signs of D and K but will assume
|D|,|K| < J . Except for very small |D|, this is outside of the
regions of the known GSs shown in Fig. 1. In order to to get
access to the [resonating-valence-bond (RVB)-like] state with
fermion excitations, we use the fermion representation of the
spin.10 After this we study the resulting phase diagram in the
mean-field approximation.

Fermion representation. The spin operator is conveniently
represented via a set of three operators called triplons which
are labeled by index α = x,y,z. In earlier papers11,15 these
operators were bosons, but here we use fermions10 written as
a vector �fi = (fix,fiy,fiz)T ,

�Si = −i �f †
i × �fi , �f †

i · �fi = 1. (2)

In terms of Sz eigenstates, we used the following basis to
represent the states of S = 1, |x〉 = i(|1〉 − | − 1〉)/√2, |y〉 =
(|1〉 + | − 1〉)/√2, |z〉 = −i|0〉, since it facilitates the handling
of the biquadratic term in the Hamiltonian. Equation (2) also
imposes a constraint of single occupation in order to exclude
unphysical states from the Hilbert space. In the mean-field
theory this constraint will be relaxed to hold only on average.
There are two possible choices of constraint for the spin-one
system: the particle representation that we used above and
the hole representation �f †

i · �fi = 2. In contrast to the case of
S = 1/2, these are not equivalent. Nevertheless, they can be
mapped into each other by a particle-hole transformation plus
a change of the sign of hopping. Therefore, we consider only
the particle representation but do not restrict hopping to be
positive to include the hole representation.20

The chosen spin representation has a remaining U (1)
redundancy:10,20 One can multiply �fi by a phase factor, leaving
the spin intact. In addition, in the absence of D there is a spin
rotation symmetry, realized by the simultaneous rotation of
the vectors �fi and ( �f †

i )T . Nonzero anisotropy D breaks full

spin rotation symmetry to rotation symmetry in the xy plane,
supplemented by the reflection of spin along the z axis.

The bilinear term is expressed via fermions as �Si · �S j =
( �f †

i · �f †
j )( �fi · �f j ) + �f †

i ( �fi · �f †
j ) �f j . Using the constraint �f †

i ·
�fi = 1, the biquadratic term also can be expressed as a product

of four fermion operators15 (�Si · �S j )2 = 1 − ( �f †
i · �f †

j )( �fi · �f j ).
Adding a Lagrange multiplier to enforce the single occupancy
constraint (2) on average, we have

H =
∑
〈i j〉

[J �f †
i ( �fi · �f †

j ) �f j + (J − K)( �f †
i · �f †

j )( �fi · �f j ) + K]

+
∑

i

[μ(1 − �f †
i · �fi ) + D(1 − f

†
izfiz)], (3)

Mean-field results. Having expressed the Hamiltonian via
fermion operators, we study the mean-field phase diagram
of our model. To unambiguously decouple quartic fermion
terms, we use the Feynman variational principle,21,22 which is
equivalent to the trial wave-function approach. We define an
action based on the Hamiltonian (3) S = ∫ β

0 dτ [
∑

i f
†
iα(∂τ −

μ)fiα + H ], as well as the trial quadratic action S̃, with H

replaced by H̃ :

H̃ =
∑
〈i j〉

[ �f †
i Ti j �f j + �f †

i Ai j �f †
j + H.c.] +

∑
i

�f †
i ti �fi . (4)

The mean-field parameters Ti j , Ai j , and ti are determined from
the stationary points of the functional �[S̃] = 〈S − S̃〉S̃ −
log Z̃:

T
αβ

i j = −J δαβ〈f †
jκfiκ〉 + (J − K)〈f †

jαfiβ〉,
A

αβ

i j = −J 〈fiβf jα〉 + (J − K) δαβ〈fiκf jκ〉, (5)

t
αβ

i =
∑
〈i j〉

[J 〈f †
jβf jα〉 − (J − K)〈f †

jαf jβ〉] − Dδαβδαz.

For T = 0, we get the estimate for the ground-state energy
Eg.s. � Ẽg.s. = 〈H 〉S̃ , where

Ẽg.s. =
∑
〈i j〉

[
T

αβ

i j 〈f †
iαf jβ〉 + A

αβ

i j 〈f †
iαf

†
jβ〉]

+ 1

2

∑
i

[
t
αβ

i 〈f †
iαfiβ〉 − D〈f †

izfiz〉 + 6K + 2D
]
.

(6)

We search for self-consistent solutions to the mean-field
equations that do not break any additional symmetries other
than T reversal. When the full spin rotation symmetry is
present, the only possible pairing order parameter is 
o ∼
〈 �fi · �f j 〉. Such pairing preserves full rotational symmetry in
spin space, with the resulting state being a spin singlet. We
call this pairing an odd channel, since it is possible only with
an odd orbital momentum, i.e., p, f -wave pairing. Since in
Hamiltonian (1), only in-plane rotational symmetry is present
for D �= 0, the pairing in the even channel with order parameter

e ∼ 〈( �fi × �f j )z〉 = 〈fixf jy − fiyf jx〉 is allowed. However,
the presence of two order parameters simultaneously violates
the symmetry with respect to rotations of π around the x or y

axis.
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Both the aforementioned types of pairing were considered
by Liu et al.10 in a similar system, however, without anisotropy
but with a competing third-nearest-neighbor J . Their treatment
of biquadratic exchange also differs from ours. The result of
Ref. 10 was that the pairing in the odd channel always wins.
Below, after establishing the mean-field equations for each
type of pairing, we identify the region in phase space where
even-channel pairing has a lower energy than the odd-channel
pairing.

Pairing in an odd channel. We introduce the mean-field
parameters χα , nα , and 
α

o , α = x,y,z, defined as

χα = 〈f †
iαfi+e1α〉, nα = 〈f †

iαfiα〉, 
α
o = 〈fiαfi+e1α〉. (7)

The vectors e1 = (1,0), e2 = (1/2,
√

3/2), and e3 = e2 − e1

specify the link orientation. The hopping is the same on all
links, whereas the pairings for the remaining two orientations
are 〈fiαfi+e2α〉 = 
α

o e
iπl
3 , 〈fiαfi+e3α〉 = 
α

o e
2iπl

3 , where the
pair angular momentum l = 1,2,3 for p + ip, d + id, and
f -wave pairing, respectively. Spin rotation symmetry in the xy

plane requires χx = χy , nx = ny , 
x
o = 


y
o . The Hamiltonian

in momentum space (modulus nonessential constant terms)
can be rewritten as

H̃ =
∑
k,α

χα
k f

†
kαfkα + 
α

kf
†
kαf

†
−kα + 
α∗

k f−kαfkα, (8)

with mean-field parameters

χα
k = 2γ (k)[(J − K)χα − J (χx + χy + χz)]

+ 6Knα − μ − δα,zD, (9)


α
k = ψ(k)

[
(J − K)

(

x

o + 
y
o + 
z

o

) − J
α
o

]
. (10)

The function γ (k) is a sum over nearest neighbors γ (k) =
cos k · e1 + cos k · e2 + cos k · e3. On the other hand, ψ(k)
depends on the type of pairing under consideration. Note
that p-wave pairing breaks the lattice rotational symme-
try. Therefore, we consider p + ip-wave and f -wave pair-
ings: ψf (k) = i(sin k · e1 − sin k · e2 + sin k · e3), ψpip(k) =
i(sin k · e1 + eiπ/3 sin k · e2 + e2iπ/3 sin k · e3). Equation (8)
is solved with the Bogoluybov transformation acting sepa-
rately on each fermion species. This results in the spectrum
Eα

k = √
(χα

k /2)2 + |
α
k |2, and mean-field equations

χα = 1

N

∑
k

1

6
γ (k)

[
1 − χα

k

2Eα
k

]
, (11a)


α
o = 1

N

∑
k

1

3
ψ∗(k)


α
k

2Eα
k

, (11b)

nα = 1

N

∑
k

1

2

[
1 − χα

k

2Eα
k

]
, (11c)

supplemented by the constraint equation 〈 �f †
i · �fi 〉 = 1.

Pairing in an even channel. Hoppings are defined as in
(7), whereas pairing is 


xy
e = 1/2〈fixfi+e1y − fiyfi+e1x〉. The

Hamiltonian is

H̃ =
∑
k,α

χα
k f

†
kαfkα + 


xy

k f
†
kxf

†
−ky + 


xy∗
k f−kyfkx,

with χα
k given by Eq. (9), and 


xy

k = 2Jψ(k)
xy
e . Note,

that the fz band is unpaired and retains its Fermi surface.

We consider s-wave and d + id-wave pairings (the d wave
violates lattice symmetry and higher orbital momentum
pairing requires inclusion of further neighbors). For the case
of s-wave pairing, the function ψs(k) = γ (k). For d + id-
wave pairing we have ψdid (k) = cos k · e1 + e2iπ/3 cos k ·
e2 + e−2iπ/3 cos k · e3. The Bogolyubov spectrum is Ex

k =
E

y

k =
√

(χx,y

k )2 + |
xy

k |2, Ez
k = χz

k . Self-consistent mean-
field equations for the x and y components are given by
Eq. (11) with the new expressions for the spectrum and gap
functions. For the z component we have

χz = 1

N

∑
k

1

3
γ (k)nF

(
χz

k

)
, nz = 1

N

∑
k

nF

(
χz

k

)
.

Our mean-field approach automatically includes on-site FN
order. The on-site nematic order is described by the order
parameter tensor Qαβ = 1/2〈�Sα �Sβ + �Sβ �Sα〉 − 2/3δαβ . For a
single site with S = 1 all states with zero average spin 〈�S〉 = 0
can be characterized by the unit director vector d,16 in the basis
defined earlier, |d〉 = dx |x〉 + dy |y〉 + dz|z〉. For this state Qαβ

is expressed via d as Qαβ = 1/3δαβ − dαdβ . For example, d‖ẑ
corresponds to the state |Sz = 0〉, and the nematic order is
diagonal, Qαβ = diag(1/3,1/3, − 2/3). In our model we also
have states with vanishing spin order and diagonal on-site
nematic order. However, since our GS is RVB like with long-
range entanglement, Qαβ cannot be described by the above
simple form. We have to introduce the magnitude q, Qαβ =
q(1/3δαβ − dαdβ). Calculating the nematic order parameter
tensor in our model, we have Q

αβ

i = δαβ[1/3 − nα], where
nα is the average occupation of corresponding fermion. Since
nx = ny , we have nematic order with d‖ẑ, with a magnitude
given by q = nz − nx , varying from 1 for nz = 1 (state |Sz =
0〉) to −1/2 for nz = 0. Nonzero anisotropy D �= 0 causes nα

to be different from 1/3, and therefore directly couples to FN
order along the z axis.

Having studied the energies of all the aforementioned states
using Eq. (6), we found that the main competition is between
states with p + ip and d + id-wave pairings, with all other
states being higher in energy. As one increases K , the effective
coupling for the odd-channel pairing decreases, whereas for
even pairing it remains the same. Finally, for K ≈ 0.45J ,
singlet pairing wins. The resulting phase diagram is shown
in Fig. 2. The boundary between the two states appears to be
weakly dependent on D.

Physical properties of the d + id state. The d + id state
breaks the time-reversal symmetry. The chiral order parameter
associated with this broken symmetry 〈�Si · (�Si+e1 × �Si+e2 )〉 ∝
χz|
xy

e |2 is proportional to the magnitude of the pairing gap
squared. In addition, pairing with d + id gap symmetry in two
dimensions is topological,23 resulting in the existence of a pair
of zero-energy edge modes at the boundaries. The physics of
these modes will be discussed elsewhere.

The combination of gapless excitations with topological
pairing gives rise to a number of unusual physical properties
that may explain the results of the recent experiment.12 Due to
ungapped fz excitations, the specific heat depends linearly
on temperature near T = 0, C = π2k2

BνzT /3, where νz is
the density of states of fiz at the Fermi surface. Due to the
Higgs mechanism, the gauge field is massive and does not
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FIG. 2. (Color online) The phase boundary between SL GSs with
p + ip and d + id pairing. (a) The spin susceptibility χ̃xx in the
d + id phase as a function of D/J for K/J = 0.55. The susceptibility
is normalized by the average density of states ν̄ = (νx + νz)/2, where
νx is calculated without the gap. (b) Gapped (dashed red line) and
ungapped (solid blue line) Fermi surfaces of x, y, and z fermions for
K/J = 0.55, D/J = 0.8.

modify the linear in T behavior of the specific heat. The spin
susceptibility exhibits more exotic behavior: Due to the pairing
of x and y fermions, the zz component χzz = 0. On the other
hand, χxx is finite and depends on the anisotropy D. For D

smaller than the gap, χ̃xx = χxx/(μBg)2 ≈ νz, and approaches
a factor-of-2 larger value χ̃xx ≈ 2νz, when D is much larger
than the gap. This difference by a factor of 2 is approximate,

and is valid in the limit of constant gap and density of states.
The behavior of χ̃xx is shown in Fig. 2(a). We calculate the
Wilson ratio, defined as RW = (4π2k2

B)/(3g2μ2
B)(χ̄T )/C, and

obtain RW = 8/3 ≈ 2.66 for the case of small anisotropy,
and RW → 16/3 ≈ 5.33 for large anisotropy. Note that we
take the average susceptibility χ̄ = 2/3χxx to account for
the polycrystalline nature of the sample. The latter value
gives surprisingly good agreement with the Wilson ratio
observed experimentally, RW ≈ 5.63. We also calculated the
imaginary part of the spin susceptibility. Since two out of three
fermions are gapped, Imχαα(ω,q) vanishes for temperatures
and frequencies smaller than the gap for all α. This implies
that the NMR relaxation 1/(T1T ) is exponentially small for
temperatures below the pairing scale. These results tell us that
the Fermi surface associated with fz [see Fig. 2(b)] should
be viewed very differently than the spinon Fermi surface in
the S = 1/2 SL, which carries spin-1/2 quantum numbers
and leads to gapless spin-1 excitations. In our case Sz = 1
excitations are gapped even though the static spin susceptibility
χxx,χyy �= 0 and the specific heat has a linear T dependence.

Finally, we discuss experiments that could confirm the
proposed ground state. Measurement of the spin susceptibility
for single-crystal or oriented powder samples is of great
interest in order to test our prediction of strong anisotropy. We
also predict an exponentially activated behavior for 1/(T1T )
which may be surprising in view of the linear T behavior of
the specific heat.
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