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The many-body localization transition (MBLT) between ergodic and many-body localized phases in disordered
interacting systems is a subject of much recent interest. The statistics of eigenenergies is known to be a powerful
probe of crossovers between ergodic and integrable systems in simpler examples of quantum chaos. We consider
the evolution of the spectral statistics across the MBLT, starting with mapping to a Brownian motion process
that analytically relates the spectral properties to the statistics of matrix elements. We demonstrate that the flow
from Wigner-Dyson to Poisson statistics is a two-stage process. First, a fractal enhancement of matrix elements
upon approaching the MBLT from the delocalized side produces an effective power-law interaction between
energy levels, and leads to a plasma model for level statistics. At the second stage, the gas of eigenvalues has
local interactions and the level statistics belongs to a semi-Poisson universality class. We verify our findings
numerically on the XXZ spin chain. We provide a microscopic understanding of the level statistics across the
MBLT and discuss implications for the transition that are strong constraints on possible theories.
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Introduction. Quantum and statistical mechanics represent
two seemingly rather different approaches to the description
of complex physical systems. Yet these two viewpoints agree
for a wide class of isolated quantum systems, which are said to
thermalize [1,2]. Determining the circumstances under which
an isolated quantum many-body system becomes its own
thermal bath and thermalizes itself, just as Baron Munchausen
could pull himself out of a mire by his own hair, perhaps using
some kind of fluctuation, is an open question.

Phenomena similar to the emergence of thermalization
also occur in few-body quantum systems, which frequently
show the emergence of so-called quantum chaos [3]. There,
upon changing parameters/number of degrees of freedom, the
classical system can go from regular to chaotic behavior.
On a quantum level this results in changes of the level
statistics, which has proven to be a powerful probe of
the system properties in the context of quantum chaos.
In particular, there exist two standard universal limits: the
Poisson statistics (PS) and the Wigner-Dyson level statistics
(WDS) [4]. For few-body systems, PS applies to systems
that are classically integrable and do not have any level
repulsion. WDS stems from random-matrix theory and holds
for generic chaotic systems, where energy levels repel each
other (i.e., the energy difference between neighboring levels
is statistically unlikely to be small compared to the mean level
spacing).

Integrable (nonchaotic) behavior is abundant in the context
of few-body physics. On the other hand, in the many-body
world, the only nonthermalizing phase (in the sense of
stability to small perturbations) is represented by many-body
localized (MBL) systems [5,6]. Recent progress established
that thermalization fails in the MBL phase due to the existence
of extensively many conserved quantities [7–10]. On the other
hand, it is known that one can tune the system through a
phase transition into a thermalizing ergodic phase [11–20].
Below, we aim to understand the evolution of the level statistics
across the MBL-to-ergodic transition, gaining insights into the
breakdown of thermalization.

The crossover between PS and WD statistics has been
studied extensively in a single-particle physics context: for a
quantum kicked rotor [21], integrability breaking perturbations
[22,23], and single-particle Anderson localization transitions
(ALT) [24–26]. In the many-body problems, a PS to WD
crossover is also known to occur upon breaking of (quantum)
integrability [27]. In most of the examples, the PS and WDS
are the only two stable points. The only known exception is the
ALT, where a universal statistics different from PS and WDS
emerges at the mobility edge [24].

The spectral statistics in the case of MBL transition was
demonstrated to evolve from WDS to PS as one localizes
the system [11,28–30], however, not much is known about the
intermediate statistics. The common probe used to characterize
the level statistics across MBLT is an average ratio of the
consecutive energy spacings [11–13,18]. However, this is a
single parameter and it does not provide much insight into the
intermediate form of the level statistic, nor into the physical
details of its crossover.

In this paper, we study how the spectral statistics changes
across the MBL-delocalization transition. In order to build a
microscopic understanding of the level statistics, we generalize
Dyson’s Brownian motion model [31], previously applied to
the ALT [32], to the many-body case. From the mapping to
Brownian motion, we obtain nontrivial relations between the
fractality [17–20], the spectral statistics, and the properties
of matrix elements across the MBLT [20,33]. While many
features can be simultaneously explained in this analysis, one
surprise is that there appear to be two different regimes of
intermediate spectral statistics: in one, the effective interaction
between energy levels in the plasma model has a variable
power law, while in the other, the effective interaction is short-
ranged but over a variable number of levels.

Within the picture of Brownian motion [31,32], the level
statistics is controlled by the effective interaction between
energy levels, see Fig. 1. In particular, deep in the ergodic
phase, the WD statistics emerges from the partition function
of a one-dimensional Coulomb gas, where particles interact
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FIG. 1. (Top) Random walk in a space of Hamiltonians induces
a stochastic process on the eigenenergies. The interaction between
eigenlevels is set by a potential energy U (si − sj ). (Bottom) The
evolution of the interaction between levels U (s) across the MBL
transition determines the level statistics.

with a logarithmic potential U (s) = − ln |s|. At a first stage,
upon approaching the MBL transition, the effective interaction
starts to decay as a power law: U (si − sj ) = |si − sj |−γ when
|s1 − s2| � Nerg. The power-law interaction changes the tails
of the level statistics, so it can be approximately described
by the plasma model, and is intermediate between the PS and
the WDS case. At the second stage, when the exponent γ

becomes bigger than one, the interaction becomes effectively
short-ranged, and the level spacing distribution tends to the
semi-Poisson distribution [34]. In this regime, it is the range
of the interaction which changes with the disorder/system size.
As soon as the range of interactions reaches zero, we arrive at
Poisson statistics.

Before discussing the implications of the above picture of
the level statistics, we justify the proposed cartoon using both
analytic and numeric arguments. In particular, we argue that
the parameter γ introduced above can be extracted from the
properties of the many-body matrix elements, which decay as a
power-law with energy separation between eigenstates, where
γ � 1 is the same power that controls the level statistics. The
power-law behavior of matrix elements can be viewed as a
generalization of the Chalker-Daniell scaling of wave function
overlap [35] to the many-body case, and it is consistent with
the fractality of the wave functions near MBLT [17–20].

Plasma model for level correlations. In the random matrix
theory, the joint probability density for the random matrix
ensembles reads

P ({si}) = e−βH

Z
, H =

∑
i

W (si) +
∑
i<j

U (si − sj ), (1)

where β = 1 for the orthogonal matrix ensemble, which will
be of primary interest. The confining potential W (s) = s2/2 is
parabolic, and the interaction is U (si − sj ) = − ln |si − sj |.
As Dyson demonstrated in his pioneering work [31], this
distribution function may be viewed as a stationary distri-
bution of the stochastic random walk in a space of matrices
(Hamiltonians).

To derive the joint distribution of eigenenergies from a
random walk, one can start from the eigenbasis and perform a
stochastic step in the space of Hamiltonians, induced by �H .

Then, we get the energy correction in a form

�sn = Vnn +
∑
m�=n

VmnVnm

sn − sm

, Vmn = 〈m|�H |n〉, (2)

which is the shift of eigenenergies induced by the perturbation
�H up to second order. For Gaussian ensembles of random
matrices, using 〈VnmVmn〉 = 2

β
�τ and 〈VnnVmm〉 = δmn�τ ,

one can derive the Fokker-Planck equation (see Ref. [36] for
more details). Its stationary (equilibrium) solution is given
by Eq. (1) with a logarithmic interaction. Note that in what
follows we omit the damping term, which keeps the bandwidth
fixed [36].

Dyson’s mapping was generalized to the case of disordered
problems [32]. For such problems, it is natural to perform a
random walk (RW) in a space of Hamiltonians by changing
realizations of disorder. As we are going to concentrate on the
properties of a spin chain of L spins in a random magnetic
field, which is coupled to the z component of a spin Sz

i ,
we take �H = ∑L

i=1 hi(τ )Sz
i , with 〈hi(τ )hj (τ ′)〉 = v2δ(τ −

τ ′)δij . Similar to the case of random matrices [3,31,36], the
two correlators, which determine the level dynamics, are

〈VnnVmm〉 = δdnm = 〈n|Sz
i |n〉〈m|Sz

i |m〉, (3)

〈VnmVmn〉 = δcnm = ∣∣〈m|Sz
i |n〉∣∣2

, (4)

where we assumed that v2 = δ/L, where δ is the many-body
level spacing, so that sn represent the unfolded energy spec-
trum. The correlator (3) sets the spectrum of a random noise,
while the spectral function cnm determines the interaction
between levels in the ensemble.

Effective interaction between levels. The RW process
depends crucially on two correlators (3) and (4). To make
analytic progress, we use a mean-field-like approximation
[32], assuming that dnm and cnm can be replaced by their
ensemble averages,

c(ω) = 〈cnmδ(sn − sm − ω)〉, (5)

(and similar expression for dnm) which now depend only on
the energy difference between eigenstates. For the single-
particle Anderson localization, the cnm and dnm necessarily
coincide with the wave function overlaps [32], cnm = dnm ∝∫

dx|ψn(τ,x)|2|ψm(τ,x)|2. The fractality of the wave function
near the mobility edge results in a power-law enhancement of
c(ω) ∝ A/ωγ [35,37]. In the case of ALT, this enhancement
arises because the envelope of wave functions nearby in energy
lives on the same multifractal domain [37]. In the many-body
case, similar enhancement can arise from the fractal structure
of the wave function in the Hilbert space in a vicinity of
MBLT [17–20].

We view the matrix elements Vnm = 〈n|Sz
i |m〉 as coeffi-

cients of the wave function of excitation created by a local
operator Sz

i from an eigenstate |m〉 [20]. We assume that the
inverse participation ratio (IPR) I2 = V

∑
m |Vnm|4 ∝ V−d2 ,

where d2 is a generalized fractal dimension, and V = exp(sL)
is the number of states in the Hilbert space. We translate the
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IPR into scaling with an energy separation as V2〈V 2
nnV

2
nk〉 ∝

(V/R)1−d2 , where R = |n − k| ≈ (Ek − En)/δ. From here,
omitting the diagonal matrix element Vnn given by the spin
expectation value, we arrive to the scaling

c(ω) ∝
(

J

ω

)γ

, γ = 1 − d2. (6)

The above argument should be viewed as phenomeno-
logical; at present, the microscopic nature of a fractal
behavior is not clear, although Griffiths (rare-region) ef-
fects [18] in the vicinity of an MBL transition provide
one possible microscopic scenario. Also, relating d2 to
the properties of matrix elements, i.e., exponent κ in the
scaling [20,33], |Vnm| ∝ exp(−(s + κ)L) is an interesting
question.

The correlation between the diagonal matrix elements, the
function dnm, also shows a power-law dependence. However,
there is an enhancement of dnm for n = m, allowing to
approximate d(ω) as a delta-function (see Supplemental
Material for additional discussion [36]).

Implications for spectral statistics. Using the power-law
form of c(ω), Eq. (6), and the delta-function form of d(ω),
we can map our model onto the plasma model for the
level statistics [38], provided γ < 1. The plasma model
assumes a power-law interaction potential U (s) = A/|s|γ in
the joint distribution function (1). It predicts the tails of the
level statistics P (s) ∝ sβ exp(−hγ s2−γ ) for s � 1, and the
variance of the number of levels in a box of size N becomes
var N ∝ Nγ , which is intermediate between a WD-like rigidity
var N ∝ ln N and the Poisson case [3,4].

For larger values of γ � 1, the effective interaction in
the gas of eigenvalues becomes short ranged, and mapping
to the plasma model no longer works. Instead, spectral
properties now are expected to be well-described by a family
of semi-Poisson distributions [34], which arise from a gas
of eigenvalues with a finite-range interaction. They predict
a Poisson-like behavior of the tails of P (s) and level com-
pressibility P (s) ∝ sβe−(βh+1)s , and var N ∝ χN with χ � 1,
where h is the range of interactions. Such level statistics has
been dubbed “critical” in the literature [39–41] and is believed
to describe the level statistics at the ALT [25,26].

Using the above intuition, we propose the following form of
the level spacing distribution and spectral rigidity to interpolate
between WDS and PS,

P (s; β,γP ) = C1s
β exp

(−C2s
2−γP

)
, var N = χNγvar , (7)

where the parameter 1 � γP ,γvar � 0 controls the tails of the
statistics and level rigidity, and 1 � β � 0 determines the
level repulsion. The constants C1,2 can be fixed by requiring
that 〈1〉 = 〈s〉 = 1. When γP = 0, this distribution becomes
WD. In the opposite limit, γP → 1, distribution (7) becomes
a semi-Poission with generic β. For the spectral rigidity, our
interpolating function also can describe the (semi-)Poisson
limit, however, failing to capture the logarithmic growth of
var N in the WD case.

FIG. 2. Averaged function c(E) evolves from being almost flat
at low disorder (W = 0.5) to a power-law decay. Note that for the
intermediate values of disorder, the matrix element is enhanced at
small energy differences compared to the limit of weak disorder.

Numerical results. We use the XXZ spin chain in a random
field as a specific model with a previously located MBL
transition [11] to test our picture of level statistics. The
Hamiltonian is

ĤXXZ =
∑
〈ij〉

Si · Sj +
∑

i

wiS
z
i , Sx,y,z = 1

2
σx,y,z, (8)

where disorder enters via random fields wi uniformly dis-
tributed in the interval [−W ; W ]. We perform exact di-
agonalization for chains of size L = 12, . . . ,16(18) with
periodic boundary conditions to extract the properties of
the matrix elements (spectral statistics). We use the central
part of the many-body spectrum, which corresponds to
energy density ε = (E − Emin)/(Emax − Emin) = 0.45 ± 0.1
and contains 246, 969, 3794, 14316 levels on average for
L = 12, . . . ,18. The MBL transition at this energy density is
believed to occur near Wc ≈ 3.6 [13]. To unfold levels, we fit
the staircase function with a third-order polynomial. We use
both local and global level unfolding schemes [42].

We start by discussing the numerical results for averaged
c(ω), presented in Fig. 2(a). Upon increasing disorder, we see
the crossover of c(ω) from a constant to a power-law decay.
As one may expect, this crossover happens at some scale,
Nerg, so that c(ω < Nerg) ∝ const, and decays as a power-law
beyond ω > Nerg. The additional scale Nerg has a meaning
similar to the correlation length, over which ergodicity holds.
As Nerg → 0, the interaction between levels becomes critical
even for the smallest separations.

From the power-law form of c(ω), we expect that level
spacing distribution for the XXZ spin chain to be well
described by Eq. (7). Figure 3(a) illustrates that the flow of
the level statistics is indeed well captured by Eq. (7). We also
considered a number of single-parameter ansatz (in particular,
Brody and semi-Poisson distribution); none of those could
capture the changes of P (s) across MBLT. The P (s) for
disorder W < 2 is not shown, as it looks very similar to the
WD distribution: since P (s) is influenced the most by the
interaction between close levels, Nerg must become close to
zero before we see the flow in the level statistics. In contrast
to the level statistics, which is influenced by a noncritical part
of c(ω), the spectral rigidity is expected to be less sensitive
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FIG. 3. (a) Evolution of level spacing distributions as the system is tuned towards the MBL phase. Points represent data for L = 16, while
solid lines are best fits with a two-parameter distribution (7). Red and black dashed lines correspond to Poisson and Wigner-Dyson distributions.
(b) The exponent γP , controlling the tails of the level statistics, flows with L for W � 2.5, but is constant in the vicinity of MBLT Wc ≈ 3.6.
(c) In contrast, β, controlling the level repulsion, remains constant for W � 2, and starts to flow closer to the MBLT.

to the behavior of c(ω) at small ω. In SM [36] we show that
var N behaves as a power-law (7), and becomes linear for
W � 2. Also, we test that different estimates for the exponent
γ show a reasonable agreement as follows from the plasma
model.

Finally, we consider the flow of parameters γP and β with
increasing system size, presented in Figs. 3(b) and 3(c). While
γP controlling the tails of the level statistics has a strong flow
at disorder W � 2.5, at larger disorders, γP is very close
to one and changes little with L. This further supports the
conclusion that for W � 2.5 the effective interaction between
energy levels becomes short-ranged for the largest accessible
system sizes. Consistent with our expectation, β shown in
Fig. 3(c) changes weakly when the statistics is described by
the plasma model (W � 2), and begins to flow once level
interactions are local.

Discussion and open questions. Using analytical and
numerical arguments, we described the spectral properties
across the MBL transition using a two-stage flow picture.
Note that we need at least two parameters, γ and Nerg, to
describe the level statistics. This is not surprising if we recall
that even in the case of ALT, the existence of multifractality
means that to describe the universal properties one requires
more information beyond the small number of critical indices
needed for a simple thermodynamic phase transition [25,26].
Below, we discuss the implications of the proposed picture of
the spectral statistics flow.

At the first stage, the “correlation length” Nerg shrinks to
zero, but the exponent responsible for level interactions γ is
smaller than one. Intuitively, the levels beyond the correlation
length become more and more different, corresponding to a
gradual breakdown of the ETH. Here, the level statistics can
be described by the effective plasma model. Although this
model was proposed some time ago [38], it does not apply in
the case of ALT, despite the presence of multifractality near
the single-particle mobility edge. Hence, to the best of our
knowledge, the present study is the first physical realization of
the plasma model.

The second stage begins at W � 2.5, when γ � 1 so that
interactions between levels are local. Although we cannot
exclude the finite size effects, the numerical estimates for the
MBL transition at Wc ≈ 3.6 suggest that at the MBL transition
interactions between levels are local. Thus we conjecture that

the level statistics near and at the MBLT belongs to the same
or similar “critical” family as the universal statistics at the
ALT [39–41]. This also naturally explains why the average
ratio of the level spacing r = min(δn,δn+1)/ max(δn,δn+1) at
the MBLT, widely used in the literature [11–13,18], is very
close to the value expected from PS.

The semi-Poisson level statistics emerges at the same
value of disorder where the boundary of the Griffiths phase
was previously identified in the literature [18], W ≈ 2.5
(Refs. [16,17] report the onset of ergodicity breaking at the
same location). The existing theories of the MBLT [14,15]
predict extensive entanglement and subdiffusive transport
in the ergodic phase. The wide region of critical statistics
near transition may be a manifestation of finite size effects
(system sizes studied are smaller that diverging correlation
length). Indeed, the strong overlaps only between adjacent
energy levels imply logarithmic transport [20], predicted at
the MBLT [14,15]. On the other hand, the existence of a
thermodynamically stable Griffiths phase is another intriguing
possibility.

In closing, we have found that Dyson’s mapping of level
statistics to Brownian motion allows one to understand the
spectral statistics in the MBL transition at least as well as in the
ALT for which it was introduced. There are basic differences
between the two transitions, e.g., several quantities which are
uniquely defined at the ALT allow inequivalent generalizations
to the MBLT. There are two steps of the spectral statistics flow,
one with long-range interactions (the plasma model) and one
with local interactions, and the boundary between the two is
found numerically to coincide with the onset of a Griffiths
phase and subdiffusive transport. Since the level statistics is
known to be the simplest universal probe of the transition
to quantum chaos in simpler problems, understanding the
origin and universality of the two-step plasma model of
level statistics is an important challenge for theories of the
MBLT.
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