Mapping the unconventional orbital texture in topological crystalline insulators

Ilija Zeljkovic, Yoshinori Okada, Cheng-Yi Huang, R. Sankar, Daniel Walkup, Wenwen Zhou, Maksym Serbyn, Fangcheng Chou, Wei-Feng Tsai, Hsin Lin, A. Bansil, Liang Fu, M. Zahid Hasan and Vidya Madhavan

The newly discovered topological crystalline insulators feature a complex band structure involving multiple Dirac cones, and are potentially tunable by external electric field, magnetic properties in many other transition-metal oxide systems. The orbital degrees of freedom, for example, are potentially highly tunable by external electric field, magnetic properties in many other transition-metal oxide systems. The orbital texture, which is of immense importance in the underlying physical processes of a material's properties remains elusive. Here, we unveil the orbital texture of Pb$_{1-x}$Sn$_x$Se, a prototypical topological crystalline insulator. By using Fourier-transform scanning tunnelling spectroscopy we measure the interference patterns produced by the scattering of surface-state electrons. We discover that the intensity and energy dependences of the Fourier transforms show distinct characteristics, which can be directly attributed to orbital effects. Our experiments reveal a complex band topology involving two Lifshitz transitions and establish the orbital nature of the Dirac bands, which could provide an alternative pathway towards future quantum applications.

A counterpart to charge and spin, electron orbitals are of great importance in the underlying physical processes of a variety of systems. The orbital degrees of freedom, for example, play a crucial role in the colossal magnetoresistance effect in manganese oxides, and contribute to the anisotropic electronic and magnetic properties in many other transition-metal oxide systems. More recently, orbital ordering within the superconducting FeAs layer has been thought to govern structural phase transitions and 'stripe'-like antiferromagnetism in Fe-based high-temperature superconductors. Similarly, topological materials host complex orbital arrangements often strongly coupled to other electronic degrees of freedom. Topological crystalline insulators (TCIs) in particular are predicted to exhibit intricate band, spin and orbital textures, potentially relevant for interactions in the quantum Hall regime. Although previous experiments provided a glimpse into the complex band topology present in TCIs, these experimental efforts have not been able to shed light onto its orbital texture. Here we use Fourier-transform (FT) scanning tunnelling spectroscopy (STS) to reveal the distinct orbital nature of the Dirac bands in the TCI, Pb$_{1-x}$Sn$_x$Se.

In its stoichiometric state, Pb$_{1-x}$Sn$_x$Se with $x = 0$ is a trivial insulator under the Z_2 topological classification of materials owing to the absence of band inversion. The process of adding Sn, which substitutes for Pb, leads to band inversion at an even number of time-reversal points, and the solutions remain Z_2 trivial. However, for a particular region of the composition–temperature parameter space, such as $0.23 < x < 0.18$ and 4 K, topologically protected surface states emerge owing to the non-trivial band topology classified by crystalline symmetries. Pb$_{1-x}$Sn$_x$Se crystals cleave along the (001) crystal direction based on the square lattice observed in scanning tunnelling microscope (STM) topographs and 3 Å step heights (Supplementary Section II). We therefore consider the band structure at the (001) face. From theory, the SS band structure consists of two 'parent' Dirac cones centred at X and vertically offset in energy. When they intersect, the hybridization between the electron branch of the lower parent Dirac cone and the hole branch of the upper parent Dirac cone opens a gap at all points except along the mirror line, leading to the formation of a pair of 'child' Dirac points shifted away from the Dirac point and the overall spectra remain homogeneous to greater than 30% of the Pb sites replaced by Sn, we find that the Dirac point and the overall spectra remain homogeneous to within a few meV (Fig. 1e and also see Supplementary Section III). Having identified the important energy scales, we proceed to the application of the Fourier-transform quasiparticle interference (FT-QPI) of this system.

1Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, USA, 2WPI-AIMR, Tohoku University, Sendai, 980-8577, Japan, 3Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, 4Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan, 5Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA, 6Graphene Research Centre and Department of Physics, National University of Singapore, 117542, Singapore, 7Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA, 8Joseph Henry Laboratory, Department of Physics, Princeton University, Princeton, New Jersey 08544, USA. *These authors contributed equally to this work. *e-mail: madhavan@bc.edu

LETTERS
PUBLISHED ONLINE: 13 JULY 2014 | DOI: 10.1038/NPHYS3012
FT-QPI imaging has been successfully applied to extract the band structure of many complex systems, such as high-temperature superconductors\(^2\), heavy-fermion compounds\(^24\)\(\sim\)25 and Z\(_2\) topological materials\(^26\)\(\sim\)28, but this technique has yet to be used fully for spin- and orbital-texture mapping of extended bands. Representative FTs of \(\partial\partial/v\) conductance maps acquired over a 1300 Å square region of Pb\(_{0.99}\)Sn\(_{0.01}\)Se are shown in Fig. 2c,f. To analyse the FTs, as a starting point, the expected QPI pattern can be obtained using a simple autocorrelation of the CECs, not including any matrix element effects (Fig. 2b,e). The pattern produced can be understood by studying the Fermi surface topology shown in Fig. 2a,d. From this, we see that two main sets of scattering wavevectors \(\mathbf{Q}_1/\mathbf{Q}_2\) and \(\mathbf{Q}_3/\mathbf{Q}_4\) are expected for the (001) SS. Above the Lifshitz transition, for example (Fig. 2d,e), the QPI pattern around the momentum positions \(\mathbf{Q}_1/\mathbf{Q}_2\) originates from scattering between two (110) mirror-symmetric pairs of Dirac cones, and is expected to be quasi-elliptical. In contrast, the pattern at \(\mathbf{Q}_3/\mathbf{Q}_4\) marks the scattering between two pairs of parent Dirac cones rotated 90 degrees with respect to one other, and should be nearly circular (Supplementary Section IV).

By studying the experimental FTs, our first observation is that there is a marked difference between the QPI patterns above \(E_{\text{VHS}}\) (Fig. 3a), where clear, nearly circular dispersing features appear, at \(E_{\text{VHS}}\) (Fig. 3b), and below \(E_{\text{VHS}}\), where a (non-dispersing) ‘clover’-like set of four dots appear (Fig. 3c). This remarkable switch in the QPI pattern is directly connected to the change in Fermi surface topology across the Lifshitz transition (Fig. 3a–f). The simple autocorrelation of the CECs shown in Fig. 2b,c confirms this picture; the disconnected CECs below \(E_{\text{VHS}}\), result in a non-dispersing clover pattern near \(\mathbf{Q}_3/\mathbf{Q}_4\), whereas the continuous oval-shaped CECs above \(E_{\text{VHS}}\), result in a quasi-circular dispersing pattern.

The main challenge of any QPI study is extracting the band structure in \(k\)-space from the observed dispersive modes in \(q\)-space. An important piece of information is provided in the set of scattering wavevectors \(\mathbf{Q}_i\) close to the Dirac point where the clover is observed (Figs 2a–c and 3c). As the clover is a product of quasiparticle scattering between four child Dirac cones in the first Brillouin zone, the average distance in \(q\)-space between the centres of neighbouring clover leaves allows us to precisely extract the \(k\)-space distance between the Dirac cones symmetric around \(X\) to be 0.060 \(\pm\) 0.006 Å\(^{-1}\). Interestingly, as the \(k\)-space location of the Dirac cones in TCIs is directly connected to doping\(^9\), and nominal doping is often quite different from the actual and can
Quasiparticle scattering occurs between different pockets and is expected to result in four principal scattering wavevectors (green arrows). Directions are 3.49 eV Å and 2.20 eV Å, respectively, providing the first insight into the high dispersion-anisotropy in these samples, which is determined to

determine to be 1.59. Each data point (yellow circle) was extracted solely from the dispersion of the sets of scattering wavevectors \(\mathbf{Q}_1 \) and \(\mathbf{Q}_2 \) (Supplementary Section IV). Solid orange and yellow lines in g are fits to the experimental data, extrapolated for visualization purposes assuming particle–hole symmetry.

Figure 3 | Visualizing the Lifshitz transition and extracting the anisotropy of the surface state (SS) dispersion. a–c, Zoom-in on the set of scattering wavevectors \(\mathbf{Q}_1 \) at energies: \(E_d + 122 \) meV, above \(E_{\text{VHS}+} \) (a), \(E_d + 52 \) meV, at \(E_{\text{VHS}+} \) (b) and \(E_d + 2 \) meV, below \(E_{\text{VHS}+} \) (c), emphasizing the striking change in the quasiparticle interference (QPI) structure across the Lifshitz transition. d–f, Schematic constant energy contour for each of the energies shown in a–c respectively. g, SS band structure along the X–Γ and X–M directions of \(\text{Pb}_{0.65}\text{Sn}_{0.35}\text{Se} \). The calculated dispersion velocities along the X–Γ and X–M directions are 3.49 eV Å and 2.20 eV Å, respectively, providing the first insight into the high dispersion-anisotropy in these samples, which is determined to be 1.59. Each data point (yellow circle) was extracted solely from the dispersion of the sets of scattering wavevectors \(\mathbf{Q}_1 \) and \(\mathbf{Q}_2 \) (Supplementary Section IV). Solid orange and yellow lines in g are fits to the experimental data, extrapolated for visualization purposes assuming particle–hole symmetry.

h, Average dI/dV spectrum on the same sample over the same energy range as the plot in g. Horizontal grey dashed lines across g and h denote the positions of prominent features in the spectrum (\(E_{d2} \), \(E_{\text{VHS}+} \), \(E_{\text{VHS}−} \)) and show an excellent match with the SS dispersion extracted from QPI. Orange and yellow lines in all panels represent Pb/Sn-like and Se-like orbital character of the states, respectively.

To extract SS dispersion anisotropy in k-space, we need to use the q-space dispersions of the sets of wavevectors at both \(\mathbf{Q}_1 \) and \(\mathbf{Q}_2 \). Remarkably, although \(\mathbf{Q}_1 \) is expected to be weak, the high

also vary within the sample, this method presents an alternative way to locally determine and compare the doping level in this class of materials.
Fig. 4 | Determining the orbital character of the surface state bands. a–c, Experimentally observed Fourier-transform quasiparticle interference (FT-QPI) pattern (left half) and calculated pattern (right half) at three representative energies: above the upper Lifshitz transition (a), close to the Dirac point (b) and below the lower Lifshitz transition (c). The pattern in c shows suppressed intensity due to the orbital character of the bands, as depicted in Fig. 1. Atomic Bragg peaks are located exactly at the corners of the field of view in a–c. Insets in a–c show the constant energy contours used to generate the simulations at each energy around a single X point. d, g, Zoom-in of the set of scattering wavevectors Q_i above the upper Lifshitz transition ($E_d + 122$ meV) and around the Dirac point energy (g). e, h, QPI signatures expected from a simple autocorrelation at the energies corresponding to d and g, respectively. e, does not show the radial asymmetry in intensity seen in the experiments in d, f, j. Simulations using the full model at the energies corresponding to d and g, respectively, showing excellent agreement. All experimental images have been 1-pixel boxcar-averaged in q-space (effectively smoothing over a radius equal to $\sim 0.5\%$ of the atomic Bragg peak wavevector).

distance from centre of FT (\AA^{-1}).

Experiment Theory
Experiment Full model
e
DOS convolution
h
$E_d + 122$ meV
$E_d + 2$ meV

$E_d + 97$ meV
$E_d + 7$ meV
$E_d - 93$ meV
$E_d - 96$ meV
$E_d + 7$ meV

$E_d + 97$ meV
$E_d + 7$ meV

$E_d - 93$ meV
$E_d - 96$ meV
$E_d + 7$ meV

$E_d - 96$ meV
$E_d + 7$ meV

<table>
<thead>
<tr>
<th>Distance from centre of FT (\AA^{-1})</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>Experiment</td>
<td>DOS convolution</td>
<td>Full model</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>Experiment</td>
<td>DOS convolution</td>
<td>Full model</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>Experiment</td>
<td>DOS convolution</td>
<td>Full model</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>Experiment</td>
<td>DOS convolution</td>
<td>Full model</td>
<td></td>
</tr>
</tbody>
</table>

The quality of our data allows us to track Q_i over a small range of energies (Supplementary Fig. 4). Using the method explained in Supplementary Section IV, we obtain the dispersions along the Γ–X and X–M directions close to the Dirac point (Fig. 3g) and determine the velocities to be $v_x = 3.49$ eV Å and $v_y = 2.20$ eV Å, giving an anisotropy coefficient of 1.59 and the geometric mean of velocities to be $(v_x v_y)^{1/2} = 2.77$ eV Å. It is important to note that no theoretical models were used to obtain these SS band dispersion velocities. Furthermore, although these velocities have been calculated without any assumptions about the exact shape of the CECs or the positions of the Lifshitz transitions, the position of the upper Lifshitz transition from Fig. 3g matches beautifully with the energy of the corresponding feature in the average dI/dV spectrum obtained on the same sample (Fig. 3h). Furthermore, the arithmetic mean of dispersion velocities $(v_x v_y)^{1/2}$ from Landau levels in Pb$_{1-x}$Sn$_x$Se are found to be 2.60 eV Å and 2.70 eV Å for $x \sim 0.33$ and $x \sim 0.30$ respectively2, and are in excellent agreement with the value of 2.77 eV Å obtained from QPI dispersion in the $x \sim 0.37$ sample.

Having determined the SS dispersion, we turn to one of the most striking aspects of the data, namely, the asymmetry in the intensity of the QPI pattern across E_d, which can be observed by comparing Fig. 4a,c (Supplementary Section V). As we show in the following discussion, this asymmetry is a direct consequence of the highly non-trivial orbital texture of the Dirac SS bands. The spin texture in this material can be simply stated as exhibiting left-handed chirality for the electron branches of all parent and child Dirac cones (Fig. 1d). The orbital character is, however, more complex. Whereas the two child Dirac cones are necessarily related by time-reversal symmetry and mirror symmetry, the two parent Dirac cones do not have to be similar (each of the parent Dirac cone maps to itself under either the time-reversal or mirror operator). In fact, by symmetry arguments aided by first-principles band structure computations, the two parent Dirac cones are
expected to have different orbital character and are associated with orbitals with opposite signs of mirror eigenvalues. Let us now consider the two sets of parent/child Dirac cones in \(k \)-space, one around \(X (\pi/a_x, 0) \) and the other around \(Y (0, \pi/a_y) \) (Fig. 1c). Theoretically, whereas the upper branch of the lower Sn parent Dirac cone is associated with \(p_z \) orbital character for both \(X \) and \(Y \)-momenta, the lower branch of the upper Se parent Dirac cone has a different orbital wavefunction—that is, Se \(p_y \) around \(X \) and Se \(p_x \) around \(Y \) (Fig. 1c). The different orbital textures below \(E_g \) at \((\pi/a_x, 0)\) and \((0, \pi/a_y)\) positions should suppress scattering between them and therefore result in diminished QPI patterns below \(E_g \), exactly as seen in Fig. 4. Our data thus provide direct experimental confirmation of the proposed orbital arrangement of the TCI SS.

To further substantiate this picture and elucidate the origin of the specific orbital-selective scattering processes responsible for the subtle features in the QPI patterns, we use the proposed spin and orbital textures in model simulations of the QPI data. We find that the resulting simulations capture many features of our data, including changes in intensity with angle in the set of scattering wavevectors \(Q \). (Supplementary Section VII) that were clearly lacking in the simple autocorrelations. Take the QPI cones. The dashed grey lines in Fig. 2g represent linear fits to \(E \) especially within the narrow energy range between the two Lifshitz transitions \(E_{\text{VHS}} \). Two-dimensional FIs of \(dV/dI \) maps (FF-QPI; ref. 23) were used to extract all the scattering wavevectors.

Received 4 January 2014; accepted 3 June 2014; published online 13 July 2014

References
23. Hoffman, J. E. et al. Imaging quasiparticle interference in Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_{8+\delta}\) using \(E_{\text{VHS}} \), which can be detected in STM \(dI/dV \) conductance maps.

Methods
The Pb\(_x\)Sn, Se single crystals used for QPI imaging were grown by the self-selecting vapour growth method, cleaved at 77 K, and immediately inserted into the STM head. Doping concentration was checked using energy-dispersive X-ray spectroscopy (EDS) and electron microprobe analysis (see Supplementary Section I for more details). All \(dI/dV \) measurements were acquired at 6 K using a standard lock-in technique with ~5 meV peak-to-peak modulation at a frequency of 1,488 Hz. We use the Lawler–Fujita drift-correction algorithm\(^8\) on all acquired data to remove the effects of slow thermal and piezoelectric drift. The quasiparticle interference (QPI) imaging technique uses the interference of elastically scattered quasiparticles (which are just electrons in this case) with different momenta \(k_1 \) and \(k_2 \), resulting in a standing wave ‘ripples’ of wavevector \(q \approx k_2 - k_1 \) which can be detected in STM \(dI/dV \) conductance maps.

© 2014 Macmillan Publishers Limited. All rights reserved.

NATURE PHYSICS | VOL 10 | AUGUST 2014 | www.nature.com/naturephysics

576
Acknowledgements

V.M. gratefully acknowledges funding from the US Department of Energy, Scanned Probe Division under Award Number DE-FG02-12ER46880 for the primary support of LZ and Y.O. (experiments, data analysis and writing the paper) and NSF-ECCS-1232105 for the partial support of W.Z. and D.W. (data acquisition). Work at Massachusetts Institute of Technology is supported by US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0010526 (L.F.), and NSF DMR 1104498 (M.S.). H.L. acknowledges the Singapore National Research Foundation for support under NRF Award No. NRF-NRF2013-03. The work at Northeastern University is supported by the US Department of Energy grant number DE-FG02-07ER46352, and benefited from Northeastern University’s Advanced Scientific Computation Center (ASCC), theory support at the Advanced Light Source, Berkeley and the allocation of time at the NERSC supercomputing centre through DOE grant number DE-AC02-05CH11231, W-F.T. and C-Y.H. were supported by the NSC in Taiwan under Grant No. 102-2112-M-110-009. W-F.T. also thanks C. Fang for useful discussions. Work at Princeton University is supported by the US National Science Foundation Grant, NSF-DMR-1006492.

F.C. acknowledges the support provided by MOST-Taiwan under project number NSC-102-2119-M-002-004.

Author contributions

Y.O., I.Z. and V.M. designed the experiments. Samples were obtained from R.S., F.C. and M.Z.H. Theoretical analysis and calculations were done by C-Y.H., M.S., W-F.T., H.L., A.B. and L.F. STM experiments were carried out by Y.O., I.Z., D.W. and W.Z., I.Z., Y.O., H.L., L.F. and V.M. analysed the data and wrote the paper.

Additional information

Supplementary information is available in the online version of the paper. Reprints and permissions information is available online at www.nature.com/reprints. Correspondence and requests for materials should be addressed to V.M.

Competing financial interests

The authors declare no competing financial interests.